Neutron Scattering Studies of Photosynthetic Energy Transduction Complexes

Robert E. Blankenship
Departments of Biology and Chemistry
Washington University in St. Louis

Oak Ridge NL Neutron Workshop Sept. 16, 2010

Kuo-Hsiang (Joseph) Tang

Funding: DOE-EFRC program

Aaron Collins

Jianzhong Wen

Collaborators: Volker Urban-ORNL Pratim Biswas-Wash. U. Sai Venkatesh Pingali-ORNL Hugh M. O'Neil-ORNL

PhotosynthesisThe Conversion
of Light Energy
into Chemical
Energy

PS is the source of all our food and most of our energy resources on Earth

Photosynthetic Energy Storage

All PS organisms contain a light-gathering antenna system

Extreme diversity of antenna systems strongly suggests multiple independent evolutionary origins

Aaron Collins 2010

Photosynthetic Reaction Centers

Purple bacterial membrane

Purple Bacterial Membrane

Photosynthetic Antenna Research center (PARC)

Objective: To understand the basic scientific principles that underpin the efficient functioning of the natural photosynthetic antenna system as a basis for manmade systems to convert sunlight into fuels.

- Washington University (Biology, Chemistry, EECE)
- Donald Danforth Plant Sci. Ctr.
- National Laboratories (Los Alamos, Oak Ridge, Sandia)
- US Universities (Pennsylvania, North Carolina State, California-Riverside)
- UK Universities (Glasgow, Sheffield)

PARC Scientific Themes

Natural
Antennas:
Structure and 1.0
Efficiency

Biohybrid
Antennas:
Organization and
Implementation

Bioinspired
Antennas:
Design and
Characterization

Photosystem from Green Sulfur Bacteria

Chlorosome antenna complexes

- Cells of green PS bacteria contain ~100 chlorosomes attached to the inside of the cell membrane
- Each chlorosome contains ~200,000 molecules of BChl c as well as carotenoid and small amounts of BChl a with only small amounts of protein

Martin Hohmann-Marriott

Chlorosome Bacteriochlorophyll Organization

- •No protein!
- Pigment oligomers
- Reversible self-assembly
- Similar to J aggregates

Oostergetel et al. Photosynth. Res. (2010)

Bio-hybrid solar cell

Electrospray Processing Steps

Microscopy images of nanostructured TiO₂ film and concept of a nano-bio device.

a, TiO₂ columnar film deposited onto ITO coated glass by a flame aerosol reactor. **b**, Chlorosomes electrospray-deposited onto a columnar TiO₂ film. **c**, schematic cartoon of a novel nano-bio hybrid devices that incorporates whole chlorosomes (without RC) and nanostructured TiO₂ columns.

P3OT=poly octothiophene

Lopez et al. *Energy and Enviromental Science*, (2010)

Contrast variation for SANS

Matching Point: Lipids (Micelles), 5-25% D_2O ; Proteins, 35-45% D_2O ; Nucleic acids: 65-75% D_2O

SANS of Chlorosomes

Chlorosome is a lipid-like particle

Guinier fits to chlorosome SANS

SANS for the chlorosome in 100% D₂O with two modified Guinier fits for rodlike particle shown in red and blue (inset)

Chlorosome stable up to 75 °C

Large particle formed in high [NaCl]

SANS of Chlorosomes

Modified-Guinier analysis (rodlike particle)

Much larger size of chlorosome particles at high salt suggested by SANS and confirmed by DLS Wash. U. Research Group-2010

Third Row Barb Honchak, Aaron Collins, Patrick Bell, Hai Yue, Joseph Tang UG - Yamini Krishnamurthy, EJ Cho,

Darek Niedzwiedzki

David Bina

Mindy Prado

Connie Kang

Jeremy King

Jing Jiang